THE ARCHITECTURAL OF ANCIENT PORT IN SIXTH CENTURY BCE EARLY WORLD CIVILIZATION

HALIM, M. H. A.¹ – SAIMIN, M.¹

¹Pusat Penyelidikan Arkeologi Global, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

*Corresponding author
e-mail: mhasfarisham[at]gmail.com; mmokh[at]usm.my

(Received 30th April 2021; accepted 29th June 2021)

Abstract. Archaeological research of early civilizations has proven that trade activities using the sea route took place much earlier than the first century AD. The evidence was obtained through archaeological research of the ancient port which is still dated to be used since the 31st Century BCE in Niuserre (Abu Gurab), West Asia, the 26th Century BCE in Dholavira, India, 18th Century BCE at Phalasarna in Europe and the 16th Century BCE in Honduras, Mesoamerica. However, this discussion only discusses the evidence of the ancient port dated at least since the sixth Century BCE for the early civilizations that have a contemporary dating with the discovery of the SB2D port structure in the Sungai Batu Complex, Lembah Bujang, Kedah.

Keywords: architecture, reconstruction, oldest in Southeast Asia, ancient port

Introduction

Recent archaeological research related to the architectural of the ancient port of early civilizations clearly show evidence of the used of sea routes has occurred over than 3,000 years ago. This is suggested based on evidence of ancient port recorded through archaeological studies that revealed it was used since the 31st century BCE in Niuserre (Abu Gurab), West Asia (Sichan, 2011), 26th century BCE in Dholavira, India (Gaur et al., 2019), 18th century BCE Phalasarna in Europe (Hadjidaki, 2001; 1988) and 16th century BCE in Honduras, Mesoamerica (McKillop, 2005; 2004a; 2004b; McKillop et al., 2004). However, archaeological research in that area is not accompanied by a proper plan of the architectural of the ancient port.

Archaeological research at the Southeast Asian until 2021 (Figure 1) show that only the Sungai Batu Archaeological Complex reveals evidence of the oldest and most complete port architecture in the region. These because other port sites in Southeast Asia are proposed as part of the trade area based on the findings of block ruins, wooden pillars, city fortifications, shipwrecks and trade artifacts such as ceramics, beads, glass, pottery and so on. So far the archaeological research at the Sungai Batu Archaeological Complex has revealed the most complete architectural evidence, the architectural structures of the port has clearly been able to fill the gaps related to the architecture of the port for early world civilization in particular.
Materials and Methods

Archaeological research of the ancient port sites of the Sungai Batu archaeological complex

Archaeological studies at the Sungai Batu Archaeological Complex especially at the SB2D site (Figure 2) (05°41.64' North and 100°27.08.35' East) have been found evidence of the shape of the port was built since 582 BCE (Table 1) (Saidin et al., 2011). The dating was obtained through in-situ brick samples at the site using Optically Stimulated Luminescence (OSL) technique. The brick samples were sent to Korea Basic Science Lab to obtain the dating data.

<table>
<thead>
<tr>
<th>Site</th>
<th>Trench</th>
<th>Spit</th>
<th>Sample classification</th>
<th>Dating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SB2D</td>
<td>f19</td>
<td>5</td>
<td>Floor structure</td>
<td>582 BCE</td>
</tr>
</tbody>
</table>

Figure 1. Location of the ancient Southeast Asian port site.
Halim and Saidin: The architectural of ancient port in sixth century BCE Early world civilization.

Figure 2. Location of the SB2D port site within the Sungai Batu archeological complex which reveals the sixth BCE dating.

Figure 3, Figure 4(a), and Figure 4(b) are sketches of the architectural structure of the SB2D ancient port and its suggestion of roof structure base on scattered of fragment of roof tile and pillar base. The site reveals its main structure measuring 19 meters x 5 meters and a support structure (Zakaria, 2014). The monumental structure of the ancient port of the SB2D site is characterized by the discovery of floor structures, walls, corridors, supporting buildings and roof tile that prove that the site as a roofed structure. In fact, the site was also built, directed and sloping towards the ancient river which further strengthens its interpretation as an ancient port in this area.
Figure 3. SB2D ancient port site based on sketch results.

Figure 4(a). Architectural design of SB2D port site.
Figure 4(b). Architectural design of SB2D for proposed roof design.

The main floor of the SB2D port structure is characterized by a brick arrangement extending north-south. A total of 42 in-situ floor bricks were arranged to the main floor structure of the port which is 19 meters long. The corridor structure that found on the side of the main structure is characterized by a non-uniform arrangement of bricks. The corridor is estimated to be about 19 x 3 meters (Zakaria, 2014) and 3 meters wide. The orientation of the corridor at SB2D site was built arranged east-west oriented and also slope into the ancient river same with main monument. The wall structure at the SB2D site is on the east side of the site separating the main building from the corridor structure. The wall consists 12 in-situ layers of bricks and extends 5x1 metres were stacked forming a wall structure on this site which is oriented in a north-south direction (Zakaria, 2014).

The northern part of the SB2D site has been recorded a rectangular structure measuring between 3.5 meters x 2.9 meters which is proposed to serve as a support building to the SB2D port site (Zakaria, 2014). The two architectural structures are proposed to be built separately due to the empty space between the two architectural of the monument. The structure is also proposed to have a roof as many of the roof tile distributions are scattered over this rectangular structure. Excavations at the SB2D site also found a log proposed as anchors pole for merchant ship masts as they anchored in the port area (Figure 5). The anchors pole were found at the last floor structure on the river banks of the ancient Sungai Batu, at trenches namely am21, an21 and ap21 at a depth of about 50 cm (Zakaria, 2014). The findings are further reinforced by the discovery of trade artifacts at the SB2D site such as ceramics, stone ware, beads and spindle whorl that clearly illustrate the SB2D site was once involved in early trading activities.
Results and Discussion

Analysis the evidence of the ancient port site of early civilizations

The chronometric dating of the SB2D port site gives data it has been built since the sixth century BCE (Mohd Hasfarisham, 2019) then the discussion in this paper will focus on evidence of ancient port architecture was built around the sixth century BCE to enable a comparative study was conducted. Therefore, Table 2 is a classification of ancient port structure data for South Asian, European and African civilizations dated to be used since the sixth century BCE while Figure 6 is the location of the ancient port sites which has been dated since the sixth century BCE in this area.

Table 2. Data classification of ancient world civilization of port sites.

<table>
<thead>
<tr>
<th>Country</th>
<th>Site</th>
<th>Coordinate</th>
<th>Classification</th>
<th>Location</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>India</td>
<td>Dantavakrunikota</td>
<td>18°27'3.64" North and 83°54'53.91" East</td>
<td>The ruins of brick monument structure and trade artifacts such as pottery</td>
<td>Benggala Bay</td>
<td>Tripati (2009)</td>
</tr>
<tr>
<td></td>
<td>Pithunda (Pithapuram)</td>
<td>16°17'0" North and 81°13'0" East</td>
<td>The ruins of brick monument structure and trade artifacts such as pottery</td>
<td>Maisolos River</td>
<td>Tripati (2009); Tripati et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Naukratis</td>
<td>30°54'04" North and 30°35'33" East</td>
<td>Wall structure, wood and trade artifacts such as pottery</td>
<td>Nil River</td>
<td>Thomas et al. (2014)</td>
</tr>
<tr>
<td>Greece</td>
<td>Corinth</td>
<td>37.56° North and 22.56° East</td>
<td>Wall structure and trade artifact such as ceramic Monument structure</td>
<td>Corinth Bay</td>
<td>Repousis et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Apollonia</td>
<td>40.43° North and 19.28° East</td>
<td>A breakwater structure</td>
<td>Mediterranean Sea</td>
<td>D’Urso et al. (2015)</td>
</tr>
<tr>
<td></td>
<td>Pythagoreion (Samos Island)</td>
<td>37°42° North and</td>
<td>A breakwater structure</td>
<td>Aegean Sea</td>
<td>Graauw (2017)</td>
</tr>
</tbody>
</table>
Based on the data of the study, the evidence of the architectural of the world's ancient port since the sixth century BCE also does not reveal the complete architecture. Much of the evidence of the ancient port site of world civilization until now recorded the discovery of stone block ruins on the seabed (Figure 7) (D’Urso et al., 2015), wooden pillar structures (Figure 8) (Morhange, 2014), port cities (Figure 9), breakwaters (Figure 10) (Garnsey et al., 1983), wall structures (Figure 11) (York, 2017) and reede (Figure 12) (Bahar and Amri, 2009) built close to the sea, gulf and rivers. Furthermore, the presence of evidence of shipwrecks, anchors and trade artifacts strengthens the interpretation of the site's function as a ancient port. Based on the archaeological research, it revealed that the port site is not complete in the architectural of the port to enable a comparative study of the architecture to be carried out.

<table>
<thead>
<tr>
<th>Location</th>
<th>Site</th>
<th>Coordinates</th>
<th>Description</th>
<th>Sea</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Marseille</td>
<td>26° 57' East</td>
<td>Wooden pole, wall from stone blocks, anchors and shipwrecks</td>
<td>Mediterranean Sea</td>
<td>Morhange (2014)</td>
</tr>
<tr>
<td>Italy</td>
<td>Gravisca</td>
<td>42°12’46” North and 11°42’37” East</td>
<td>The ruins of brick monument structure, breakwater and trade artifact such as pottery</td>
<td>Mediterranean Sea</td>
<td>Shuey (1981; 1978)</td>
</tr>
<tr>
<td>Libya</td>
<td>Ptolemais</td>
<td>32°42’ North and 20°57’ East</td>
<td>Wall structure measuring 300x5m</td>
<td>Mediterranean Sea</td>
<td>York (2017)</td>
</tr>
<tr>
<td>Tunisia</td>
<td>Salakta</td>
<td>35°24’ North and 11°03’ East</td>
<td>Ruin of fort and breakwater measuring 350m long</td>
<td>Mediterranean Sea</td>
<td>Garnsey et al. (1983)</td>
</tr>
</tbody>
</table>

Figure 6. Location of the ancient port sites of early world civilization.
Halim and Saidin: The architectural of ancient port in sixth century BCE Early world civilization.

Figure 7. Ancient stone block structure of a port on the seabed. Source: Graauw (2019a).

Figure 8. Ancient port reveals a pillar structure. Source: Dogu et al. (2011).
Figure 9. One of the port city structures that was mapped during the archaeological study. Sources: Seshan (2019).

Figure 10. Ancient breakwater structure. Source: Graauw (2019b).
Therefore, until now, only archaeological research at the Sungai Batu Archaeological Complex have been able to reveal the most complete ancient port architecture since the sixth century BCE and can be used as a reference related to the ancient port architecture in the world. To date, the discovery of 11 port structures on the left and right river banks of the Sungai Batu has been recorded (Halim, 2019; 2014) which is also the only area for early world civilization to reveal so many port structures in a river environment.
Conclusion

Archaeological research in the area of the Sungai Batu Archaeological Complex in a systematic and scientific manner have been able to study and examine the architectural of the most complete ancient port for Southeast Asia in particular and the world in general. It is built on the river banks of a Sungai Batu and its architecture slopes towards it to fit the basic interpretation of the shape of the port. Therefore, the evidence of archaeological studies in the Sungai Batu Archaeological Complex until now is a strong support regarding the architectural structure of the port was built using bricks since the sixth century BCE to represent the architectural of the ancient port of world civilization.

Acknowledgement

This study was conducted under the grant of "Sungai Batu Archaeological Study (1001/PARKEO/870007)". Thanks are due to Dato 'Professor Dr. Mokhtar Saidin, Director of Pusat Penyelidikan Arkeologi Global for guidance and advice during this study. In addition, the assistance from staff and fellow researchers who are directly and indirectly involved in this research is also thanked.

Conflict of interest

The authors confirm that there are no conflict of interest involve with any parties in this research.

REFERENCES

